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same variance, positive skewness

same variance, negative skewness
Φ value

probability
a Gaussian random field, Φ

(Φ=primordial gravitational potential)

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001 

-10 < fNL < 74 
WMAP, Komatsu et al 2010

〈Φ3〉~   〈ΦG2〉
2

fNLskewness

 Φ(x)=ΦG(x)+fNL(Φ2(x)-<Φ2>)

〈Φ4〉~   〈ΦG2〉
3fNL2kurtosis

c
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What about
Φ(x)= ΦG(x)+ gNL (ΦG(x)3-3ΦG(x)<ΦG2>)?

gNL > 0: positive kurtosis gNL < 0: negative kurtosisGaussian

“gNL”

(Okamoto and Hu 2002; Enqvist and Nurmi 2005) 

Φ value

probability

-12 < gNL /105 < 16
(WMAP, Fergusson et al 2010)

current constraints:

kurtosis:
〈Φ4〉~  〈ΦG2〉c gNL

3

NO skewness:
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probability

Gaussian
negative skewness and usual 

kurtosis: τNL = (6/5fNL)2
positive skewness and larger  

kurtosis: τNL > (6/5fNL)2

Φ value

-6000 < τNL  < 33,000
(WMAP, Smidt et al 2010)

current constraints:

“τNL”
Φ(x)=φG,i(x)+φG,c(x) + fNL (φG,c2(x)-<φG,c2>)~

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010; 
Shandera, Dalal, Huterer 2010)

〈Φ3〉~   〈ΦG2〉2fNLskewness

〈Φ4〉~   〈ΦG2〉
3τNLkurtosis

c
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δρ/ρ
δc

dark matter halos form in peaks of the density field

A Signature: more/fewer massive halos
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Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
 Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000

δρ/ρ
δc

non-Gaussianity changes the number density of peaks
Gaussian fNL, τNL =(6/5 fNL)2 fNL=0, gNL

number of peaks ⇔ number of halos~

dark matter halos form in peaks of the density field

A Signature: more/fewer massive halos

fNL, τNL = 2(6/5 fNL)2
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δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

δρ/ρ

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
 Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000

Simplest approach for analytic mass function
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Mass function of dark matter halos 9

Figure 7. The FOF(0.2) mass functions of all the simulation out-
puts listed in Table 2. Remarkably, when a single linking length
is used to identify halos at all times and in all cosmologies, the
mass function appears to be invariant in the f − lnσ−1 plane. A
single formula (eqn. 9), shown with a dotted line, fits all the mass
functions with an accuracy of better than about 20% over the
entire range. The dashed curve show the Press-Schechter mass
function for comparison.

effective power spectrum slope, neff . Cosmic density ranges
over 0.3 ≤ Ω ≤ 1.0. Remarkably, all curves lie very close
to a single locus in the f − ln σ−1 plane. The use of a con-
stant linking length has significantly reduced the amplitude
of the redshift trend seen in the ΛCDM model in the previ-
ous section, and also places the OCDM outputs on the same
locus.

The numerical data in Fig. 7 are well fit by the following
formula:

f(M) = 0.315 exp
[

− | ln σ−1 + 0.61|3.8
]

, (9)

valid over the range −1.2 ≤ ln σ−1 ≤ 1.05.
In Fig. 8 we plot the difference between the measured

mass functions and our fitting formula. The fit is good to
a fractional accuracy better than 20% for −1.2 ≤ lnσ−1 ≤
1. This is a very significant improvement over the Press-
Schechter formula which would exceed the vertical limits of
the plot! The curves for the open models with Ω = 0.3 are
slightly high in this plot but only by ∼ 10%. The spread
between the different curves increases for large lnσ−1. This
may simply reflect the fact that the very steep high mass end
of the mass function is sensitive to numerical effects which
change the masses of clusters in a systematic way.

As shown in the figure, eqn. 9 is very close to the formula
proposed by Sheth & Tormen (1999); there is a small dif-
ference in the high mass tail, for lnσ−1 > 0.9. A non-linear
least-squares fit of eqn. 7 to the simulation data in Fig. 8
shows that the fit can be improved by adjusting the param-
eters A, p and a. If the normalisation constraint, eqn. 6, is
ignored, all three parameters can be allowed to vary freely.
In this case, the best fit is obtained for A = 0.353, p = 0.175

Figure 8. The residual between the fitting formula, eqn. 9, and
the FOF(0.2) mass functions for all the simulation outputs listed
in Table 2. The lines are colour codes according to the value
of neff . Solid lines correspond to simulations with Ω = 1, short
dashed lines to flat, low Ω0 models, and long dashed lines to open
models. The heavy dashed line shows the Sheth-Tormen formula
(equation (7))

and a = 0.73 (and 0.84 of the mass is in halos). If the nor-
malisation constraint is enforced, then only two parameters
can vary; in this case the fit is not as good as that provided
by eqn. 9.

Fig. 9 shows the area of the lnσ−1−neff parameter space
which is occupied by the data in Fig. 8. The high mass end
has good coverage in neff with values up to -2.3. In prac-
tice this means that for currently popular cosmologies, the
high mass tail of the halo mass function is well determined
at all redshifts where galaxies have so far been observed.
The τCDM-gif simulation at z = 4.04 has neff = −2.26
and agrees well with τCDM-hub which determine the high
mass end of the mass function at more recent epochs. We
have checked that the τCDM-gif z = 5 output, which has
neff = −2.35, is also consistent with our fitting function,
although its Poisson errors are slightly too large to satisfy
our 10% criterion for inclusion in Figs. 7–9. For low Ω our
fitting formulae should work to even higher redshift. Since
fluctuations grow more slowly for low Ω, and the value of
σ8 required to match current cluster abundances is higher,
low density cosmologies predict substantially less negative
values for neff at each redshift.

6 CONCLUSIONS

We have derived halo mass functions at z = 0 from sim-
ulations of the τCDM and ΛCDM cosmologies over more
than four orders of magnitude in mass, ∼ 3 × 1011 to
∼ 5 × 1015h−1M". In particular, our two Hubble volume
simulations provide the best available predictions for the
abundance of the most massive clusters. We have checked

c© 2000 RAS, MNRAS 000, 1–14
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∼halo mass

δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M 
(Press & Schechter 1974)

Jenkins et al 2000 

δρ/ρ

Press-Schechter

simulations

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
 Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000

only qualitative agreement 
for Gaussian cosmology

Simplest approach for analytic mass function
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δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

Mass function and bias from non-Gaussian simulations 9
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Figure 5. Comparison between the halo mass functions from our simulations and from the models by Matarrese et al. (2000), by
LoVerde et al (2008), and the fit by Dalal et al. (2008) for different values of fNL (different panels) and for z = 0, 0.5, 1 (triangles,
circles, squares, respectively). The quantity which is plotted is the ratio f(z, fNL)/f(z, fNL = 0, ). The dotted lines indicate the models
of Matarrese et al. 2000 (green) and LoVerde et al 2008 (magenta), as they appear in equations (B.6) and (4.19) of LoVerde et al (2008),
respectively. The corresponding solid lines indicate the same models with a reduced threshold for halo collapse: δc ! 1.5. The blue solid
lines are obtained by convolving the fNL-dependent kernel given in Dalal et al. (2008) with the mass-function fit for the Gaussian case
by Warren et al. (2006).

3.5 Summary of accuracy and range of validity of

the mass function fits

In order to facilitate the use of our fitting formulae for the
halo mass function we summarize here their accuracy and
range of validity.

• For −80 ! fNL ! 80 and 0 ! z ! 0.5 the best de-
scription (with 5 per cent accuracy) of our numerical data
is given by equations (10), (4) and (11);

• For larger values of fNL and z (but with fNL ! 750 and
z ! 1.6) or whenever an accuracy of 10 per cent is enough,
the universal fits of Section 3.2 should be used:

– universal fit for −80 ! fNL ! 250: equations (4), (7)
and Table 4;

– universal fit for −80 ! fNL ! 750: equations (4), (8),
(9) and Table 5.

4 MATTER POWER SPECTRUM

In this section we study how non-Gaussian initial conditions
influence the power spectrum of the mass density field. At
tree level, the power spectrum does not depend on fNL in
Eulerian perturbation theory. However, one-loop corrections
make the power spectrum fNL-dependent. Qualitatively,
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δρ/ρ

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
 Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000

But seems to work OK for the 
non-Gaussian correction nNG

(M)/nG(M)

halo mass

Simplest approach for analytic mass function

Pillepich, Porciani, Hahn 2008 (and others)
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δc

number of peaks ≈ area in 
tail of PDF

number of peaks ⇔ number of halos~ probability

PDF for δ(M) ↔ # of halos of mass M
(Press & Schechter 1974)

 Dalal, Dore, Huterer, Shirokov 2007 

Mass function and bias from non-Gaussian simulations 9
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Figure 5. Comparison between the halo mass functions from our simulations and from the models by Matarrese et al. (2000), by
LoVerde et al (2008), and the fit by Dalal et al. (2008) for different values of fNL (different panels) and for z = 0, 0.5, 1 (triangles,
circles, squares, respectively). The quantity which is plotted is the ratio f(z, fNL)/f(z, fNL = 0, ). The dotted lines indicate the models
of Matarrese et al. 2000 (green) and LoVerde et al 2008 (magenta), as they appear in equations (B.6) and (4.19) of LoVerde et al (2008),
respectively. The corresponding solid lines indicate the same models with a reduced threshold for halo collapse: δc ! 1.5. The blue solid
lines are obtained by convolving the fNL-dependent kernel given in Dalal et al. (2008) with the mass-function fit for the Gaussian case
by Warren et al. (2006).

3.5 Summary of accuracy and range of validity of

the mass function fits

In order to facilitate the use of our fitting formulae for the
halo mass function we summarize here their accuracy and
range of validity.

• For −80 ! fNL ! 80 and 0 ! z ! 0.5 the best de-
scription (with 5 per cent accuracy) of our numerical data
is given by equations (10), (4) and (11);

• For larger values of fNL and z (but with fNL ! 750 and
z ! 1.6) or whenever an accuracy of 10 per cent is enough,
the universal fits of Section 3.2 should be used:

– universal fit for −80 ! fNL ! 250: equations (4), (7)
and Table 4;

– universal fit for −80 ! fNL ! 750: equations (4), (8),
(9) and Table 5.

4 MATTER POWER SPECTRUM

In this section we study how non-Gaussian initial conditions
influence the power spectrum of the mass density field. At
tree level, the power spectrum does not depend on fNL in
Eulerian perturbation theory. However, one-loop corrections
make the power spectrum fNL-dependent. Qualitatively,
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Pillepich, Porciani, Hahn 2008 (and others)

δρ/ρ

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
 Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000

halo mass

Simplest approach for analytic mass function

Of course we need simulations 
to trust this, and once we have 
them we can just fit for nNG(M)

But seems to work OK for the 
non-Gaussian correction nNG

(M)/nG(M)
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Nevertheless, it’s useful to have an analytic understanding
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How to get the PDF for δ(M) ?

Nevertheless, it’s useful to have an analytic understanding
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How to get the PDF for δ(M) ?

Nevertheless, it’s useful to have an analytic understanding

•Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, 
Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007) 
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How to get the PDF for δ(M) ?

Nevertheless, it’s useful to have an analytic understanding

•Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, 
Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007) 

• Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion 
of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007
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probability

How to get the PDF for δ(M) ?

δρ/ρ

mass

cu
m
ul

an
ts

 o
f 
δ(

M
)

Nevertheless, it’s useful to have an analytic understanding

•Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, 
Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007) 

• Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion 
of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007

cumulants easy to compute, pretty 
insensitive to “shape” of polyspectra
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probability

How to get the PDF for δ(M) ?

δρ/ρ

mass
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Nevertheless, it’s useful to have an analytic understanding

•Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, 
Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007) 

• Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion 
of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007

cumulants easy to compute, pretty 
insensitive to “shape” of polyspectra

• Approximate PDF by truncating ln(Edgeworth) series
(ML & Smith 2011)

17



probability

How to get the PDF for δ(M) ?

δρ/ρ

mass

cu
m
ul

an
ts

 o
f 
δ(

M
)

Nevertheless, it’s useful to have an analytic understanding

•Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, 
Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007) 

• Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion 
of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007

cumulants easy to compute, pretty 
insensitive to “shape” of polyspectra

• Approximate PDF by truncating ln(Edgeworth series)
(ML & Smith 2011)

(τNL terms log-divergent w/box size) Boubeker & Lyth 2005
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probability

How to get the PDF for δ(M) ?

δρ/ρ

mass

cu
m
ul

an
ts

 o
f 
δ(

M
)

Nevertheless, it’s useful to have an analytic understanding

•Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, 
Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007) 

• Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion 
of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007

cumulants easy to compute, pretty 
insensitive to “shape” of polyspectra

• Approximate PDF by truncating ln(Edgeworth series)
(ML & Smith 2011)

Beyond “Extended Press-Schechter”: Lam & Sheth 2009; Maggiore & Riotto 
2009;  D’Amico, Musso, Norena, Paranjape 2010; Chongchitnan & Silk 2010; 

Yokoyama, Sugiyama, Zaroubi, Silk 2011 
19



N-body simulations with fNL, gNL, and τNL 

fNL
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Φ(x)= ΦG(x)+ fNL (ΦG(x)2-<ΦG2>)

A Signature: more/fewer massive halos
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N-body simulations with fNL, gNL, and τNL 
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gNL

(see also Desjacques and Seljak 2010)

kurtosis can 
have important 
effects on the 
mass function!

Φ(x)= ΦG(x)+ gNL (ΦG(x)3-3ΦG(x)<ΦG2>)?

A Signature: more/fewer massive halos
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N-body simulations with fNL, gNL, and τNL 
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fNL, τNL independent

τNL ≠ (5/6fNL)2 
is noticeable!

A Signature: more/fewer massive halos
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comparison of fNL, gNL, and τNL 
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A Signature: more/fewer massive halos

gNL looks a little different
τNL looks like fNL with larger fNL
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 Summary
fNL, gNL and τNL non-Gaussian initial 
conditions can significantly change the 
abundance of dark matter halos

We’ve found an analytic description for the 
change to the halo mass function that 
compares well to N-body for fNL, gNL and 
τNL -- perhaps it works for more general 
forms of NG?

See also Sugiyama’s talk!
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